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Abstract

A novel nonlinear waveform estimation method based on the

Asymptotic Waveform Evaluation is presented. The method

generates transient waveform estimation of large, distributed

networks with arbitrary terminations, while using neither

convolution nor numerical inversion techniques, both of which

are found to be expensive for other methods. These are avoided

due to the exponential form of the fundamental modes of the

linear system. The linear network analysis speedup of waveform

estimation, already demonstrated, is here supplemented for the

nonlinear case.

I.Introduction

Transient analysis of large networks containing both lumped

and distributed elements including lossy, coupled transmission

lines with arbitrary nonlinear terminations has proven to be CPU

intensive. Several methods have been proposed for the analysis

of networks containing coupled and/or lossy transmission lines

[1]-[8]. Some of these methods have been modified to apply to

networks with nonlinear terminations [9]-[ 12]. Additionally, oth-

er new approaches have been proposed [ 13]-[14] for the analysis

of nonlinem distributed networks, Of these methods, all except

lumped-element model reductions, require time-domain convo-

lution and/or numerical inversion from the frequency domain to

the time domain.

Any convolution method used implies that for each time

point calculation all previous time points must be taken into ac-

count. The CPU expense can quickly become large with increas-

ing number of time points. This is especially true for mismatched

mnsmission lines. Djordjevic et al. [10] have noted that convo-

lution is the most time-consuming portion of the calculations and

attempt to minimize it by quasi-matching the transmission lines.

Schutt-Aine and Mittra [91 also make note of the expense of con-

volution which they are able to avoid, with considerable speed-

UPJO~Y for the Iossless cme+
Additionally, most methods require some form of numerical

inversion algorithms such as FFT [ 10] or Numerical Inversion of

Laplace Transform (NILT) [7], sometimes applied in numerous

iterations [14], to transform frequency points into time-domain

descriptions. This is art additionally large expense for large sys-
tem and with many frequency points.

In [11] a new approach was proposed for nonlinear wave-

form estimation which does not require numerical inversion

methods. However, the method still requires convolution.

In this summary we otttliie a novel extension of waveform

estimation which requires neither convolution nor numerical in-

version methods. It is ideally suited for very large systems with

many components. The method relies directly on the approxi-

mate poles and residues obtained from the Asymptotic Wave-

form Evaluation (AwE) [15] and its generalization (GAWE) [8]

which have previously been successfully applied to linear wave-

form estimation. The AWE and GAWE have been shown to give

an estimated transient response with 2-3 orders of magnimde

speed-up over SPICE. With elimination of convolution, the non-

linear solution speed-up is increased further by 25 to 50 times, In

addition, the proposed method can handle the general case where

the network contains lossy, multiconductor transmission lines,

whereas conventional circuit simulators such as SPICE cannot.

while being fast, the method is ideal for implementation in terms

of parallel computation which would increase its efficiency.

2. Response of the Linear Subnetwork

Consider a nonlinear network rc which contains an arbitrmy

linear subnetwork. The linear subnetwork may contain distribut-

ed components. The actual frequency response of the linem sub-

network due to an impulse applied at a single input and measured

at single output can be given by,

k
H(s) = ~ ~

S–pn
n=l

(p

where pn is the n-th pole of the response and kn its correspond-

ing residue. Distributed systems imply an infinite number of tran-

scendental poles, (N = c=). However, by applying the

Generalized Asymptotic Waveform Evahtation (GAWE) tech-

nique to the modified nodal admittance matrix equations of the

linear subnetwork networks [ 11],[16], it is possible to extract an

approximate q-pole transfer function of this network.

Let the approximate response due to a single input applied

only at xi and measured at output Vj be described by,

(2)

‘i’ j] is the n-th approximate dominant pole of the re-where pn
[i,j] .

sponse and kn lts corresponding n-th approximate residue.

The poles of a system are its fundamental modes. Obtaining

1341

CH314t -9192/0000- 1341$01.0001992 IEEE 1992 IEEE MTT-S Digest



their approximation is not equivalent to simply forming a rational

function approximation. It is to be noted that severat improve-

ments to the method of obtaining these fundamental modes of a

linear system are currently in progress [171, [181.

We characterize the entire linear subnetwork by a minind

M x N input-output approximate transfer function description.

The N inputs xi to be described witl be either voltage nodes with

attached independent voltage sources or attached augmenting

voltage sources in the form of nonline~ terminations where the

voltage is a function of some variable(s), or branch currents with

attached independent current sources or attached augmenting

nontinear terminations where the current is a function of some

variable(s).

The M output ports Vj are the desired voltage nodes and

branch current outputs, and all voltage nodes and branch currents

which are the arguments of the nontinear functions yielding the

inputs mentioned. (See example in Figure 1).

+V3 -

+1~>”

~s’
desired output => +V2 -

M x N input-output characterization

N=4 inputs: V2,V3,V4~l

M=3 OUt@S:VI,V2,12

Figure 1: Example Nonlinear Network.

The general M x N hybrid characterization is given by,

M rxs

or,

~=H Jfx~(@I

where, using (2), HM ~ ~ (s) is given by,

(3)

(4)

~[1,1]

n
~[1,’]

n
~[1, h’f]

n

[1, 1]
s–pn

[1,2] ““”
s-Pn

[l, M]
s–pn

1
~[2, 1] ~[’,’] ~[2, M]

s-j”] s-;;” ‘1 ““” s-;:”~l

!:’~[N, 1]
n

“ ~ [N, 2] ~ [N, M]

[N, 1]
s–pn

s_:[N,l] ““”

1;

~_: [N, M]
n n

(5)

To make the mathematical analysis simpler, we assume that

the same q approximate dominant poles characterize each of the

[i’j] = p , V[.x,, v,]input-output transfer functions; i.e. pn
n 11’

giving,

~xN(s) = ‘&(S-pn)-lH

n=l 1
~[Z 11 ~[2> ‘1 . . . ~;’>kfl

n n

~[M 11 ~[N, 11 . . . ~;N, M]
-n n

(6)

or in compact form,

a

‘M XN(S) = ~ Kn(s–pn)-l (7)

n=l

Without the need for numencat inversion, the approximate

M x N transient impulse response is immediately given by a

closed form,

(8)

n=l

3. Response of the nonlinear network

The required subset response ~(t) and its approximation

~(t) consists of the subset of M entries of V(t) due to a gen-

eral ~ (t) input equat to a subset of N non-zero entries of X (r) ,

~(t) can be given by the convolution of the approximate trm.

sient M x N transfer response and the input waveforms as,

. (n)
~(4 = ~ ~oKnexp (pn (t- T)) I(T)dT = ~ Y (t)

n=l n=l

(9)

In order to simptify we use two points and the mapezoidal

rule for integration from t = O to t = At,

. (n)
1’ (LM = # (Kn [X (0) + exp (pnAt) K(At) 1 ) (10)

Substituting t = t + At in (9) we obtain,

j+n) (I+ At) = JOr ‘AtKnexp (pn (r+ Al- ~) ) ~ (t) dz (11)
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From (9) and (11) we get,

~(n)(t+ AI) = exp (pnAt) [~(n) (()] +

# (Kn [~ (t+ At) + exp (pnAt) ~(t) ] )
(12)

The last equation is a recursive one, which says that the tran-

sient output at a time point depends only on the output at the pre-

vious time point and the present and previous input waveform

time points. We have eliminated the convolution.

In the formulation of (3) we treated the nonlinear elements as

augmenting sources. If we further expand ~(t) in terms of its

linetw and nottlinetu components, g (I) and ~(~ (t) ) , and use

~(t) =~([) ,weget,

~(I+At) = C1+C#(~(t+Af)) (13)

where,

9

[“(n)d+Cl = ~ exp (pnAt) ~

~ in ~~ {g(t+At) +exp (PnAr) l-f(~(r)) +i?(r+Ar)l }

n=l

(14)

is a constant which depends on the previous time point and the

present and previous input waveform timepoints, and

(15)

n=l

Every time point may be calculated as a solution to nonlinear

equation in (13) whose constants depend only on the previous

time point solution.

4. CPU considerations

The linear waveform estimation of the GAWE was shown to

be 2-3 orders of magnitude faster in comparison to HSPICE.

When convolution is avoided for the nonliiear segments, the

speed-up is maintained. It is difficult to compare the speed-up to

all other nonlinem methods, however, we are able to theoretically

estimate the spxxl-up of this method over the same method re-

quiring convolution.

Let the number of time points needed be Nt, usually

100< Nt S 500, and let the number of multiplications needed per

time point due the number of nonlinear elements and sources be

N ~ ~ n which reflects the size of the matrix Kj, and let the order

of approximations or the number of poles be Nq, usually

4 S N S 10. Then, assuming that we calculated the convolution

only al the interface of the sources and the nonlinear elements,

and assuming that Niter iterations are needed per nonlinear so-

lution of a time point for both convolution and non-convolution

methods, the number of multiplications needed to perform an en-

tire convolution will be generally given by,

Nt i Nt

(16)

Nl(Nt+ ~)NirerNm~~

2

Without convolution and using q poles, the number of multi-

plications is reduced to,

Nt

E ‘it~?’N~xnNq = ‘tNilt?#mxnN9
i=l

(17)

The ratio of (16) to (17) is,

Nt+l

Nq

Given typical values of Nt = 200 and Nq = 6, this is a

speed-up of 33. The range of speed-up will generally vary be-

tween 25 and 50. This is a conservative estimate since it does not

include the speed-up due to avoiding numerical inversion tech-

niques compmed to other methods, The following examples

demonstrate the relative accuracy of the method.

S. Example

A Iossy, coupled transmission line circuit is given in Figure 2.

The nonlinear current sources are functions of the output voltage,,

The source is a 5V pulse of lns rise/fall time and 3ns duration,,

The output voltage is given, first in the lossless, uncoupled case

as compared to HSPICE, and then in the lossy, coupled case.

““’x%+r’’out—=
75$2 25s2 5fi

L T- 2pF
TQ~v ~lPF

lpr –
T

? l@l

0.5PF~ ~
a ~ =— = VI . . ‘~- A

~ .

fl(v)=o.oo5v-o.05(v)2-o.o 1(V)3
—

25f2 ‘J1~ + 2PF

E
Iz=f2(Vout)

f*(v)=o.oo3v-o.02(v)2+o.o l(V)%O.01(V)4 .
=

I
99..Qq_p3d3*
C.u

Figure 2: RLCG: nonlinear coupled transmission line network
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Figure 3: Transient response of Figure 2.

6. Conclusion

The linear waveform estimation of the AWE/GAWE was

shown to be 2-3 orders of magnitude faster in linear waveform

estimation than a complete analysis by simulators. The method

introduced here allows us to use this speed-up for nonlinem

waveform estimation and even increase it further by eliminating

convolution and/or numerical inversion. Additional refinements

of methods used to accurately obtain the dominant linear system

modes should further increase the usefulness of the technique.
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