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Abstract

A novel nonlinear waveform estimation method based on the
Asymptotic Waveform Evaluation is presented. The method
generates transient waveform estimation of large, distributed
networks with arbitrary terminations, while using neither
convolution nor numerical inversion techniques, both of which
are found to be expensive for other methods. These are avoided
due to the exponential form of the fundamental modes of the
linear system. The linear network analysis speedup of waveform
estimation, already demonstrated, is here supplemented for the
nonlinear case.

1.Introduction

Transient analysis of large networks containing both lumped
and distributed elements including lossy, coupled transmission
lines with arbitrary nonlinear terminations has proven to be CPU
intensive. Several methods have been proposed for the analysis
of networks containing coupled and/or lossy transmission lines
[1]-[8]. Some of these methods have been modified to apply to
networks with nonlinear terminations [9]-[12]. Additionally, oth-
er new approaches have been proposed [13]-[14] for the analysis
of nonlinear distributed networks. Of these methods, all except
lumped-element model reductions, require time-domain convo-
lution and/or numerical inversion from the frequency domain to
the time domain.

Any convolution method used implies that for each time
point calculation all previous time points must be taken into ac-
count. The CPU expense can quickly become large with increas-
ing number of time points. This is especially true for mismatched
transmission lines. Djordjevic et al. [10] have noted that convo-
lution is the most time-consuming portion of the calculations and
attempt to minimize it by quasi-matching the transmission lines.
Schutt-Aine and Mittra [9] also make note of the expense of con-
volution which they are able to avoid, with considerable speed-
up, only for the lossless case.

Additionally, most methods require some form of numerical
inversion algorithms such as FFT [10] or Numerical Inversion of
Laplace Transform (NILT) [7], sometimes applied in numerous
iterations {14}, to transform frequency points into time-domain
descriptions. This is an additionally large expense for large sys-
tem and with many frequency points.

In [11] a new approach was proposed for nonlinear wave-
form estimation which does not require numerical inversion
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methods. However, the method still requires convolution.

In this summary we outline a novel extension of waveform
estimation which requires neither convolution nor numerical in-
version methods. It is ideally suited for very large systems with
many components. The method relies directly on the approxi-
mate poles and residues obtained from the Asymptotic Wave-
form Evaluation (AWE) [15] and its generalization (GAWE) [8]
which have previously been successfully applied to linear wave-
form estimation. The AWE and GAWE have been shown to give
an estimated transient response with 2-3 orders of magnitude
speed-up over SPICE. With elimination of convolution, the non-
linear solution speed-up is increased further by 25 to 50 times. In
addition, the proposed method can handle the general case where
the network contains lossy, multiconductor transmission lines,
whereas conventional circuit simulators such as SPICE cannot.
While being fast, the method is ideal for implementation in terms
of parallel computation which would increase its efficiency.

2. Response of the Linear Subnetwork

Consider a nonlinear network 7t which contains an arbitrary
linear subnetwork. The linear subnetwork may contain distribut-
ed components. The actual frequency response of the linear sub-
network due to an impulse applied at a single input and measured
at single output can be given by,

N
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where p,, is the n-th pole of the response and k,, its correspond-
ing residue. Distributed systems imply an infinite number of tran-
scendental poles, (N = «). However, by applying the
Generalized Asymptotic Waveform Evaluation (GAWE) tech-
nique to the modified nodal admittance matrix equations of the
linear subnetwork networks [11],[16], it is possible to extract an
approximate g-pole transfer function of this network.

Let the approximate response due to a single input applied
only at x; and measured at output Vi be described by,
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where p,&’ */1 is the n-th approximate dominant pole of the re-
sponse and k, "/ its corresponding #-th approximate residue.

The poles of a system are its fundamental modes. Obtaining
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their approximation is not equivalent to simply forming a rational
function approximation. It is to be noted that several improve-
ments to the method of obtaining these fundamental modes of a
linear system are currently in progress [17],[18].

We characterize the entire linear subnetwork by a minimal
M XN input-output approximate transfer function description.
The N inputs x; to be described will be either voltage nodes with
attached independent voltage sources or attached augmenting
voltage sources in the form of nonlinear terminations where the
voltage is a function of some variable(s), or branch currents with
attached independent current sources or attached augmenting
nonlinear terminations where the current is a function of some
variable(s).

The M output ports v, are the desired voltage nodes and
branch current outputs, and all voltage nodes and branch currents
which are the arguments of the nonlinear functions yielding the
inputs mentioned. (See example in Figure 1).

+V3 -

Ty

L

Distributed
Linear

V=es(0) Subnetwork

=

desired output => +V, -

M XN input-output characterization
N=4 inputs: Vz,V3,V4'Il
M=3 outputS: Vl,V2,12

Figure 1: Example Nonlinear Network.

The general M X N hybrid characterization is given by,
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where, using (2), H v x n (5) is given by,
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To make the mathematical analysis simpler, we assume that
the same ¢ approximate dominant poles characterize each of the
input-output transfer functions; i.e. pn"’ =Dy v [xi, % j] s
giving,
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or in compact form,

q
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Without the need for numerical inversion, the approximate
M XN transient impulse response is immediately given by a
closed form,

q
hyxn® = Y K,exp (0 ®
n=1
3. Response of the nonlinear network

_ The required subset response V (#) and its approximation
V() consists of the subset of M entries of V () duetoa gen-
eral X (#) inputequal to a subset of N non-zero entries of X (1) .
V(1) can be given by the convolution of the approximate tran-
sient M X N transfer response and the input waveforms as,
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In order to simplify we use two points and the trapezoidal
rule for integration from ¢ = 0 to ¢t = A¢,
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Substituting ¢ = ¢+ At in (9) we obtain,
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From (9) and (11) we get,

~

n) . (n)
YV (+4) = exp(p,AD) [y (t):l +
- (K, [X(t+An) +exp(p, AN X(D)])
2 \'n n (12)

The last equation is a recursive one, which says that the tran-
sient output at a time point depends only on the output at the pre-
vious time point and the present and previous input waveform
time points. We have eliminated the convolution.

In the formulation of (3) we treated the nonlinear elements as
augmenting sources. If we further expand X () in terms of its
linear and nonlinear components, ¢ (¢) and f(V (¢)), and use
V() =Y (), weget,

P+ A1) = C,+Cof (9 (1 + A1) 13
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is a constant which depends on the previous time point and the
present and previous input waveform timepoints, and

q
At
C=5 XK, (15)
n=1
Every time point may be calculated as a solution to nonlinear
equation in (13) whose constants depend only on the previous
time point solution.

4. CPU considerations

The linear waveform estimation of the GAWE was shown to
be 2-3 orders of magnitude faster in comparison to HSPICE.
When convolution is avoided for the nonlinear segments, the
speed-up is maintained. It is difficult to compare the speed-up to

all other nonlinear methods, however, we are able to theoretically -

estimate the speed-up of this method over the same method re-

quiring convolution.

Let the number of time points needed be N ;» usually
100 £ N, < 500, and let the number of multiplications needed per
time point due the number of nonlinear elements and sources be
N, « , whichreflects the size of the matrix K;, and let the order
of approximations or the number of pole§ be N_, usually
4<N_<10. Then, assuming that we calculated the convolution
only at the interface of the sources and the nonlinear elements,
and assuming that N,,,, iterations are needed per nonlinear so-
lution of a time point for both convolution and non-convolution
methods, the number of multiplications needed to perform an en-
tire convolution will be generally given by,

Nt i N:
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Without convolution and using ¢ poles, the number of mult-
plications is reduced to,

Nt
ZNiteerx,,Nq = NNige mx,,Nq an
i=1

The ratio of (16) to (17) is,

Nz+1

N
q

Given typical values of N, =200 and N, = 6, this is a
speed-up of 33. The range of speed-up will generally vary be-
tween 25 and 50. This is a conservative estimate since it does not
include the speed-up due to avoiding numerical inversion tech-
niques compared to other methods. The following examples
demonstrate the relative accuracy of the method.

S. Example

A lossy, coupled transmission line circuit is given in Figure 2.
The nonlincar current sources are functions of the output voliage.
The source is a 5V pulse of 1ns rise/fall time and 3ns duration.
The output voltage is given, first in the lossless, uncoupled case
as compared to HSPICE, and then in the lossy, coupled case.

CI(V)zo.OOSV-O.OS(V)Z—O.Ol(V)3

£,(V)=0.003V-0.02(V)*+0.01(V)*+0.01(VY*

jf 25Q

Figure 2: RLCG: nonlinear coupled transmission line network
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Figure 3: Transient response of Figure 2.

6. Conclusion

The linear waveform estimation of the AWE/GAWE was
shown to be 2-3 orders of magnitude faster in linear waveform
estimation than a complete analysis by simulators. The method
introduced here allows us to use this speed-up for nonlinear
waveform estimation and even increase it further by eliminating
convolution and/or numerical inversion. Additional refinements
of methods used to accurately obtain the dominant linear system
modes should further increase the usefulness of the technique.
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